上海叶拓科技有限公司

Provide customers with high-quality precision equipment
A high-tech industry integrating R&D, production, sales and service of experimental equipment
What is the working principle of Shanghai Yetuo freeze-drying machine?
release time:2022-09-08  |  Browse:2980

The freeze-drying principle of Shanghai Yetuo freeze-drying machine:

Freeze drying technology is a special drying technique, and the basic principle of freeze drying technology is based on the three-phase change of water. The three phases of water (H2O) are solid, liquid, and gas, and the three phases of water can coexist or convert to each other.

Firstly, it is freezing. When the solution is rapidly frozen (cooling by 10-50 ℃ per minute), the grain size remains visible under the microscope; On the contrary, the crystals formed during slow freezing (1 ℃/min) are visible to the naked eye. Coarse crystals leave large gaps during sublimation, which can improve the efficiency of freeze-drying. Fine crystals leave smaller gaps after sublimation, which hinders the sublimation of the lower layer. The finished product of rapid freezing has fine particles, uniform appearance, large specific surface area, good porous structure, fast dissolution rate, and relatively stronger moisture absorption of the finished product. The drugs are pre frozen in two ways in the freeze-drying machine: one is to cool the product and drying oven simultaneously; Another method is to wait for the drying oven shelf to cool down to around -40 ℃ before placing the products. The former is equivalent to slow freezing, while the latter is between quick freezing and slow freezing, and is often used to balance freeze-drying efficiency and product quality. The disadvantage of this method is that when the product is put into the box, the water vapor in the air will quickly condense on the shelf. In the early stage of sublimation, if the plate heats up quickly, the large area of sublimation may exceed the normal load of the condenser. This phenomenon is particularly significant in summer. The freezing of the product is in a static state. Experience has shown that supercooling can easily occur to the point where the product temperature has reached the eutectic point. But the solute still does not crystallize. In order to overcome the supercooling phenomenon, the temperature at which the product freezes should be lower than a range below the eutectic point and should be maintained for a period of time until the product is completely frozen.

Another factor is the conditions and speed of sublimation. When the saturated vapor pressure of ice at a certain temperature is greater than the partial pressure of water vapor in the environment, sublimation can begin; The suction and capture of water vapor by a condenser with a lower temperature than the product is a necessary condition for maintaining the temperature rise. The distance traveled by gas molecules between two consecutive collisions is called the mean free path, which is inversely proportional to pressure. At normal pressure, its value is very small, and the sublimated water molecules are prone to collide with the gas and return to the surface of the steam source, resulting in a slow sublimation rate. As the pressure decreases below 13.3 Pa, the average free path increases by 105 times, significantly accelerating the sublimation rate. The water molecules that fly out rarely change their orientation, thus forming a directed steam flow. The vacuum pump plays a role in removing permanent gases in the freeze dryer to maintain the necessary low pressure for sublimation. At atmospheric pressure, 1g of water vapor is 1.25L, but at 13.3Pa, it expands to 10000 liters. It is impossible for a regular vacuum pump to extract such a large volume per unit time. The condenser actually forms a vacuum pump specifically designed to capture water vapor. The temperature for product and condensation is usually -25 ℃ and -50 ℃. The saturated vapor pressures of ice at this temperature are 63.3 Pa and 1.1 Pa, respectively, resulting in a significant pressure difference between the sublimation and condensation surfaces. If the partial pressure of non condensable gases in the system can be ignored at this time, it will cause the water vapor sublimated from the product to reach the condenser surface at a certain flow rate and form frost. The sublimation heat of ice is about 2822J/gram. If no heat is supplied during the sublimation process, the product can only compensate for the sublimation heat by reducing its internal energy until its temperature reaches equilibrium with the condenser temperature, and the sublimation stops. In order to maintain the temperature difference between sublimation and condensation, sufficient heat must be provided to the product.

Entering the sublimation process, in the first stage of heating (extensive sublimation stage), the temperature of the product should be within a range below its eutectic point. Therefore, the shelf temperature needs to be controlled. If the product has been partially dried but the temperature exceeds its eutectic point, the product will melt, and the melted liquid will be saturated with ice but not saturated with solute. Therefore, the dried solute will quickly dissolve and eventually condense into a thin and stiff block, with an extremely poor appearance and slow dissolution rate. If the melting of the product occurs in the later stage of extensive sublimation, due to the small amount of melted liquid, it will be absorbed by the dried porous solid, causing damage to the block after freeze-drying. When dissolved with water, the dissolution rate can still be slow. In the process of extensive sublimation, although there is a significant temperature difference between the shelf and the product, the sublimation heat absorption is relatively stable and the product temperature is relatively constant due to the fact that the plate temperature, condenser temperature, and vacuum temperature remain basically unchanged. As the product dries layer by layer from top to bottom, the resistance to ice sublimation gradually increases. The temperature of the product will also slightly increase accordingly. Until the presence of ice crystals is no longer visible to the naked eye. At this point, over 90% of the moisture has been removed. The process of extensive sublimation has basically come to an end. In order to ensure that the entire box of products is fully sublimated, the plate temperature still needs to be maintained for one stage before the second stage of heating is carried out. The remaining percentage of water is called residual water, which differs in physical and chemical properties from free state water. Residual water includes chemically bound water and physically bound water, such as crystallized water, water bound by proteins through hydrogen bonds, and adsorbed water on solid surfaces or capillaries. Due to the binding of residual moisture by a certain gravity, its saturated vapor pressure decreases to varying degrees, resulting in a significant decrease in drying speed. Although increasing the temperature of the product promotes the gasification of residual moisture, if the temperature exceeds a certain limit, the biological activity may also sharply decrease. The maximum drying temperature required to ensure product safety should be determined through experimentation. Usually, in the second stage, we maintain a plate temperature of around+30 ℃ and keep it constant. At the beginning of this stage, due to the increase in plate temperature, there is less residual moisture and it is not easy to vaporize, so the temperature of the product rises rapidly. But as the temperature of the product gradually approaches the temperature of the board, heat conduction becomes slower and requires patience for a considerable period of time. Practical experience has shown that the drying time for residual moisture is almost equal to the time for a large amount of sublimation, and sometimes even exceeds it.

Finally, record the changes in shelf temperature and product temperature over time to obtain the freeze-drying curve. A typical freeze-drying curve system divides the temperature rise of the shelf into two stages. During a large amount of sublimation, the temperature of the shelf remains low, and can generally be controlled between -10 and+10 depending on the actual situation. In the second stage, the shelf temperature is adjusted appropriately according to the properties of the product, which is suitable for products with lower melting points. If the performance of the product is not yet clear, the machine performance is poor, or its operation is not stable enough, this method is also more reliable. If the eutectic point of the product is high, the vacuum degree of the system can be maintained well, and the refrigeration capacity of the condenser is sufficient, a certain heating rate can also be used to raise the shelf temperature to the maximum allowable temperature until the freeze-drying is completed, but it is also necessary to ensure that the temperature of the product during mass sublimation does not exceed the eutectic point. If the product is thermally unstable, the second stage plate temperature should not be too high. In order to improve the sublimation speed of the first stage, the shelf temperature can be raised once to above the maximum temperature allowed by the product; When the stage of extensive sublimation is basically over, the plate temperature should be lowered to the maximum allowable temperature. Although these latter two methods increase the speed of extensive sublimation to some extent, their anti-interference ability is correspondingly reduced. Sudden decrease in vacuum degree and cooling capacity or power outage may cause the product to melt. Reasonably and flexibly mastering the first method is still a commonly used approach at present.

When the water vapor pressure is greater than 6.105 × 10-4MPa, ice will melt into water, which will then evaporate into water vapor, known as the evaporation process; When the water vapor pressure is less than 6.105 × 10-4MPa, ice is heated and sublimated into water vapor, which is the sublimation process. The vacuum freeze dryer utilizes the principle of phase change of water. Freeze drying is the process of pre cooling materials to -30~-40 ℃, which can freeze most of the moisture in the materials into ice and provide a low-temperature heat source. Under vacuum conditions, the ice is sublimated into water vapor, thereby achieving the purpose of dehydration and drying of the materials.

The products obtained by ordinary drying generally have problems of volume reduction and texture hardening. Most of the volatile components are lost, and some heat sensitive substances undergo denaturation and deactivation. Some substances even undergo oxidation. There are significant differences in traits. Because the vacuum freeze-drying machine is different from traditional heating methods, heating drying only undergoes one phase transition from "liquid to gas", while freeze-drying requires two phase transitions, first from "liquid to solid" deformation, and then through sublimation "solid to gas" phase transition. Therefore, materials treated with freeze-drying technology have a porous and loose structure, which has better rehydration properties and is convenient for subsequent processing or direct consumption.

Moreover, freeze-drying machines have a wide range of applications, and all non-toxic and moisture containing items can use freeze-drying technology, which is applied in various fields such as medicine, biological products, food, active substances, etc. Its application scale is still rapidly expanding.

7585b2b28e16caf6b1d810822a50759.jpg


Previous:The necessity of pre freezing materials for Shanghai Yetuo freeze-drying machine     Next:What are the advantages of freeze-drying? How about the freeze dryer in Shanghai Yetuo Laboratory
Follow us
Mobile station
  • Mobile:19961895916
  • Tel:19961895916
  • WeChat Account:上海葉拓科技
  • Email:yetuo@sh-yetuo.com
  • Address:C2-301, green window, No. 4, Lvdu Avenue
Copyright? 2025 Shanghai Yetuo Technology Co., Ltd  ICP備案號:滬ICP備20000740號-3 主站蜘蛛池模板: 山西华盛筑景装饰,山西专业公装公司,太原公装装修公司,包括:办公室,酒店宾馆,商铺店铺,学校幼儿园,会所会馆饭店餐馆等装修设计 | 输送机|滚筒输送机|皮带输送机|滚筒|无动力滚筒|万向球生产厂家-上海霞韵输送机械设备有限公司 | 直流电机调速器,直流电机控制器,直流电机调速电源-淄博诚铖创惠电子有限公司 | 上海钧尚电器有限公司 - Faulhaber电机 AMETEK pittman电机 AMETEK ROTRON军用航空风机 Exlar电动缸 MAE电机 MCG电机 CP电动工具 马头工具 AMCI驱动器 直流电机 减速箱 直流伺服电机,无刷电机,直线电机 直流防爆电机 防爆电机 汽车助力转向电机 EPS电机 faulhaber motor faulhaber gearbox NANOTEC电机 ELWOOD电机 PHYTRON电机 EXLAR伺服电动缸 高力矩、高性能直流电机,音圈电机,风机,直流风机,航空风机 | 浙江桥梁检测车出租_杭州桥检车出租_桥梁检测车出租_桥检车租赁_桥梁检测车租赁-广州众诚设备租赁有限公司 | 主题公园设计|主题公园规划|水上乐园设计|龙翔设计|龙翔景观|龙翔文旅|深圳市龙翔设计景观工程有限公司 | 衡水物流网,衡水物流信息网,衡水物流公司,衡水货运专线,衡水专线运输车辆 | 宁波管道安装_宁波工业冷风机_宁波冷风机厂家_宁波厂房通风降温_「浙江甬风机电」 | 专利申请|知识产权贯标|商标提异议|国外专利申请-润平知识产权 | 江门高空车出租|高空作业设备出租|中特设备租赁有限公司 | 视觉检测设备_CCD光学筛选机_分度盘光学筛选机-无锡精质智能装备 | 汽修学校|汽车维修学校收费|全国职业技校汽修-北京万通汽修学校 汽车轴承|圆锥滚子轴承|轴承生产厂家|赛襄轴承 | 聊城钢管厂,无缝钢管厂家-山东旺耀金属制品有限公司 | 绝缘纸板-3240环氧板-酚醛布板-FR4环氧板-沈阳友达绝缘材料有限公司 | 消字号牙膏代加工|面膜代加工|凝胶贴牌|漱口水贴牌-南京三盾药业有限公司-消字号牙膏代加工|面膜代加工|凝胶贴牌|漱口水贴牌-南京三盾药业有限公司 | 箱包定制_广州箱包厂_双肩电脑背包_双肩旅行包_拉杆箱包_商务公文包_包包批发,深圳爱自由,礼品箱包定制,电话:400-0061-690 | 无锡大型数控龙门铣,喷涂加工,回火抛丸加工,精密不锈钢焊接机床身机床底座制造加工-无锡美高帝机械有限公司 | 泊头市鸿海泵业有限公司--导热油泵,高温油泵,沥青保温泵,圆弧泵,齿轮油泵,高粘度泵,自吸离心油泵,罗茨油泵为主的专业生产厂家 | 伸缩接头,限位伸缩接头,传力接头,可拆卸接头,橡胶接头,衬四氟橡胶接头,橡胶软连接,橡胶补偿器,防水套管- 巩义市隆盛管道设备有限公司 | 辣椒烘干机-百信机械提供大中小型辣椒烘干机房设备视频图片厂家价格多少钱 | 素时刻 - 为亿万家庭提供健康饮食 | 消字号牙膏代加工|面膜代加工|凝胶贴牌|漱口水贴牌-南京三盾药业有限公司-消字号牙膏代加工|面膜代加工|凝胶贴牌|漱口水贴牌-南京三盾药业有限公司 | 生活污水处理工程安装承包-江苏富瑞源环境工程有限公司 | 金属雕花板厂家_外墙保温板_专业生产批发_山东百菲特 | 天津印刷_天津印刷厂_天津印刷公司_天津包装盒厂家_天津包装盒印刷厂_七层共挤膜厂家_彩色印刷_画册印刷_礼品盒定做 _七层共挤膜_食品真空袋-欢迎访问嘉联包装官网! | 河南郑州纯净水设备_厂家_价格_河南江宇环保科技有限公司水处理设备工厂 | 郑州房产律师|专业房地产纠纷律师热线_河南锦盾律师事务所 | 中房网_中国房地产业协会官方网站 | 麦秸映像网络技术有限公司,河南省政府采网入驻对接,新乡网站维护建设,小程序开发,APP定制开发,钉钉开发,新乡软件开发等相关网络业务 | 乌鲁木齐万疆通管道设备有限公司 销售热线;13565955557-新疆 乌鲁木齐 万疆通 管道设备 波纹补偿器 膨胀节 金属软管 伸缩器 管件 阀门 维修 | 泰州阳光会计服务有限公司官网-泰州公司注册|泰州代理记账 | 商用厨具|商用厨房设备|商用电磁灶-鲁宝厨业官方网站 | 清尼龙滤膜-清洁度检测设备-清洁度分析仪-清洁度萃取机-优昂(百科) | 兰州钢结构,甘肃铝镁锰板工程,青海岩棉复合板厂家,宁夏岩棉彩钢板公司,西宁彩钢夹芯板-兰州腾达彩钢 | 上海礼品公司_定制商务礼品_促销礼品_福利礼品_创意礼品_上海普田商贸有限公司 | 西安西雷脉冲功率技术有限公司-高压调制器/加速器与脉冲功率系统的研发/生产/应用推广/高压脉冲电源的应用研究/设计/生产和销售/高功率脉冲器件/材料与仪器设备的研发/生产和销售/高电压/大电流/强磁场环境的模拟及测试服务/会议会展服务/货物及进出口的业务/脉冲功率技术领域类的技术转让 | 游离二氧化硅处理仪-恒温恒湿称重系统-智能蒸馏仪-硫化物酸化吹气仪-萃取仪-COD消解仪 | 橡皮艇_冲锋舟_充气钓鱼船_橡皮艇价格_海威龙橡皮艇生产厂家-首页 | 首页--南京俊全科技有限公司,环保监测无人机,大疆无人机,农用无人机,植保无人机,巡检无人机,无人机环境监测仪,消防,无人机,航拍测绘,固定翼无人机,无人机电力巡检,四旋翼无人机 | 无锡市恒威工业气体有限公司-工业高纯气体_高纯度特种气体 | 西克制冷官网│制冷机组冷风机冷库设备厂家-西克制冷(无锡)有限公司_西克制冷(无锡)有限公司 |